On the Picard Bundle

نویسندگان

  • INDRANIL BISWAS
  • G. V. RAVINDRA
چکیده

Fix a holomorphic line bundle ξ over a compact connected Riemann surface X of genus g, with g ≥ 2, and also fix an integer r such that degree(ξ) > r(2g−1). Let Mξ(r) denote the moduli space of stable vector bundles overX of rank r and determinant ξ. The Fourier–Mukai transform, with respect to a Poincaré line bundle on X × J(X), of any F ∈Mξ(r) is a stable vector bundle on J(X). This gives an embedding ofMξ(r) in a moduli space associated to J(X). If g = 2, then Mξ(r) becomes a Lagrangian subvariety. Résumé Sur le fibré de Picard. Soient ξ un fibré en droites holomorphe sur une surface de Riemann compacte connexe X de genre g ≥ 2, et r un entier tel que degré(ξ) > r(2g−1). Notons Mξ(r) l’espace de modules des fibrés vectoriels stables sur X, de rang r et de déterminant ξ. Ayant choisi un fibré de Poincaré sur X × J(X), la transformée de Fourier–Mukai associée fait correspondre à un fibré F ∈ Mξ(r) un fibré vectoriel stable sur J(X). Ceci fournit un plongement de Mξ(r) dans un espace de modules associé à J(X). Lorsque g = 2, Mξ(r) s’identifie ainsi à une sous-variété lagrangienne de cet espace de modules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Projective Poincaré and Picard Bundles

Let X be an irreducible smooth projective curve of genus g ≥ 3 defined over the complex numbers and let Mξ denote the moduli space of stable vector bundles on X of rank n and determinant ξ, where ξ is a fixed line bundle of degree d. If n and d have a common divisor, there is no universal vector bundle on X ×Mξ. We prove that there is a projective bundle on X ×Mξ with the property that its rest...

متن کامل

On Picard Bundles over Prym Varieties

Let P be the Prym variety associated with a covering π : Y → X between non-singular irreducible projective curves. If P̃ is a principally polarized Prym-Tyurin variety associated with P , we prove that the induced Abel-Prym morphism ρ̃ : Y → P̃ is birational onto its image for genus gX > 2 and deg π 6= 2. We use such result to prove that the Picard bundle over the Prym variety is simple and moreov...

متن کامل

Tangent Bundle of a Complete Intersection

Let X be a Fano variety of Picard number one defined over an algebraically closed field. We give conditions under which the tangent bundle of a complete intersection on X is stable or strongly stable.

متن کامل

On the Stability of the Tangent Bundle of a Hypersurface in a Fano Variety

Let M be a complex projective Fano manifold whose Picard group is isomorphic to Z and the tangent bundle TM is semistable. Let Z ⊂ M be a smooth hypersurface of degree strictly greater than degree(TM)(dimC Z−1)/(2 dimC Z−1) and satisfying the condition that the inclusion of Z in M gives an isomorphism of Picard groups. We prove that the tangent bundle of Z is stable. A similar result is proved ...

متن کامل

Deformations of the Generalised Picard Bundle

Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n0, d0 are integers such that n0 ≥ 1 and nd0 + n0d > nn0(2g − 2). Let E be a semistable vector bundle over ...

متن کامل

Picard Groups on Moduli of K3 Surfaces with Mukai Models

We discuss the Picard group of the moduli space Kg of quasi-polarized K3 surfaces of genus g ≤ 12 and g 6= 11. In this range, Kg is unirational, and a general element in Kg is a complete intersection with respect to a vector bundle on a homogenous space, by the work of Mukai. In this paper, we find generators for the Picard group PicQ(Kg) using Noether-Lefschetz theory. This verifies the Noethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008