On the Picard Bundle
نویسندگان
چکیده
Fix a holomorphic line bundle ξ over a compact connected Riemann surface X of genus g, with g ≥ 2, and also fix an integer r such that degree(ξ) > r(2g−1). Let Mξ(r) denote the moduli space of stable vector bundles overX of rank r and determinant ξ. The Fourier–Mukai transform, with respect to a Poincaré line bundle on X × J(X), of any F ∈Mξ(r) is a stable vector bundle on J(X). This gives an embedding ofMξ(r) in a moduli space associated to J(X). If g = 2, then Mξ(r) becomes a Lagrangian subvariety. Résumé Sur le fibré de Picard. Soient ξ un fibré en droites holomorphe sur une surface de Riemann compacte connexe X de genre g ≥ 2, et r un entier tel que degré(ξ) > r(2g−1). Notons Mξ(r) l’espace de modules des fibrés vectoriels stables sur X, de rang r et de déterminant ξ. Ayant choisi un fibré de Poincaré sur X × J(X), la transformée de Fourier–Mukai associée fait correspondre à un fibré F ∈ Mξ(r) un fibré vectoriel stable sur J(X). Ceci fournit un plongement de Mξ(r) dans un espace de modules associé à J(X). Lorsque g = 2, Mξ(r) s’identifie ainsi à une sous-variété lagrangienne de cet espace de modules.
منابع مشابه
Stability of Projective Poincaré and Picard Bundles
Let X be an irreducible smooth projective curve of genus g ≥ 3 defined over the complex numbers and let Mξ denote the moduli space of stable vector bundles on X of rank n and determinant ξ, where ξ is a fixed line bundle of degree d. If n and d have a common divisor, there is no universal vector bundle on X ×Mξ. We prove that there is a projective bundle on X ×Mξ with the property that its rest...
متن کاملOn Picard Bundles over Prym Varieties
Let P be the Prym variety associated with a covering π : Y → X between non-singular irreducible projective curves. If P̃ is a principally polarized Prym-Tyurin variety associated with P , we prove that the induced Abel-Prym morphism ρ̃ : Y → P̃ is birational onto its image for genus gX > 2 and deg π 6= 2. We use such result to prove that the Picard bundle over the Prym variety is simple and moreov...
متن کاملTangent Bundle of a Complete Intersection
Let X be a Fano variety of Picard number one defined over an algebraically closed field. We give conditions under which the tangent bundle of a complete intersection on X is stable or strongly stable.
متن کاملOn the Stability of the Tangent Bundle of a Hypersurface in a Fano Variety
Let M be a complex projective Fano manifold whose Picard group is isomorphic to Z and the tangent bundle TM is semistable. Let Z ⊂ M be a smooth hypersurface of degree strictly greater than degree(TM)(dimC Z−1)/(2 dimC Z−1) and satisfying the condition that the inclusion of Z in M gives an isomorphism of Picard groups. We prove that the tangent bundle of Z is stable. A similar result is proved ...
متن کاملDeformations of the Generalised Picard Bundle
Let X be a nonsingular algebraic curve of genus g ≥ 3, and let Mξ denote the moduli space of stable vector bundles of rank n ≥ 2 and degree d with fixed determinant ξ over X such that n and d are coprime. We assume that if g = 3 then n ≥ 4 and if g = 4 then n ≥ 3, and suppose further that n0, d0 are integers such that n0 ≥ 1 and nd0 + n0d > nn0(2g − 2). Let E be a semistable vector bundle over ...
متن کاملPicard Groups on Moduli of K3 Surfaces with Mukai Models
We discuss the Picard group of the moduli space Kg of quasi-polarized K3 surfaces of genus g ≤ 12 and g 6= 11. In this range, Kg is unirational, and a general element in Kg is a complete intersection with respect to a vector bundle on a homogenous space, by the work of Mukai. In this paper, we find generators for the Picard group PicQ(Kg) using Noether-Lefschetz theory. This verifies the Noethe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008